Vị trí tương đối của đường thẳng với đường tròn

1. Vị trí tương đối của đường thẳng với đường tròn

Cho đường tròn \(\left( C \right)\) có tâm \(O\), bán kính \(R\) và đường thẳng \(\Delta \). Khi đó:

– \(\Delta \) và \(\left( C \right)\) không có điểm chung \( \Leftrightarrow d\left( {I;\Delta } \right) > R\)

– \(\Delta \) và \(\left( C \right)\) có điểm chung duy nhất \(M \Leftrightarrow d\left( {I;\Delta } \right) = R = IM\)

Khi đó \(\Delta \) được gọi là tiếp tuyến với đường tròn hay \(\Delta \) và \(\left( C \right)\) tiếp xúc với nhau tại \(M\).

– \(\Delta \) và \(\left( C \right)\) có hai điểm chung phân biệt \( \Leftrightarrow d\left( {I;\Delta } \right) < R\)

2. Một số dạng toán thường gặp về tiếp tuyến và đường tròn

Dạng 1: Viết phương trình tiếp tuyến với đường tròn

Cho đường tròn   \(\left( C \right):{(x – a)^2} + {(y – b)^2} = {R^2}\) có tâm \(I\left( {a;b} \right)\), bán kính \(R\).

a) Tiếp tuyến với \(\left( C \right)\) tại \(M\left( {{x_0};{y_0}} \right)\) đi qua \(M\) và nhận \(\overrightarrow {IM} \) là véc tơ pháp tuyến.

b) Tiếp tuyến với \(\left( C \right)\) đi qua \(M\left( {{x_0};{y_0}} \right)\)

– Gọi phương trình đường thẳng $\Delta :ax + by + c = 0$

– Lập hệ phương trình \(\left\{ \begin{array}{l}M \in \Delta \\d(I,\Delta ) = R\end{array} \right.\) tìm mối quan hệ \(a,b,c\).

– Cho \(a\) (hoặc \(b,c\)) một giá trị cụ thể (thường cho \(a = 1\)) rồi tìm \(b,c\)

c) Tiếp tuyến \(\Delta \) với \(\left( C \right)\) song song hoặc vuông góc với đường thẳng \(d\) đã cho.

– Xác định VTPT (VTCP) của \(\Delta \) và gọi phương trình của \(\Delta \)

– \(\Delta \) là tiếp tuyến với \(\left( C \right) \Leftrightarrow d\left( {I,\Delta } \right) = R\)

Dạng 2: Viết phương trình đường tròn biết mối quan hệ của nó với đường thẳng cho trước.

Cho đường thẳng \(\Delta :ax + by + c = 0\)

a) Đường tròn có tâm \(I\) và tiếp xúc \(\Delta \) thì \(R = d\left( {I,\Delta } \right)\)

b) Đường tròn có tâm \(I\) và cắt \(\Delta \) tại hai điểm \(A,B\) thỏa mãn điều kiện nào đó:

\(d\left( {I,\Delta } \right) = \sqrt {{R^2} – \frac{{A{B^2}}}{4}} \)

Author: Cô Minh Anh