Phương pháp giải các bài toán tìm min, max liên quan đến số phức

1. Kiến thức cần nhớ

– Mô đun của số phức \(z = a + bi\) là \(\left| z \right| = \sqrt {{a^2} + {b^2}} \ge 0\)

– Bất đẳng thức Cô-si: \(x + y \ge 2\sqrt {xy} \) với \(x,y > 0\)

– Bất đẳng thức Bunhiacopxki: \(\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right) \ge {\left( {ac + bd} \right)^2}\)

– Bất đẳng thức chứa dấu giá trị tuyệt đối: \(\left| {\left| {{z_1}} \right| – \left| {{z_2}} \right|} \right| \le \left| {{z_1} \pm {z_2}} \right| \le \left| {{z_1}} \right| + \left| {{z_2}} \right|\)

2. Một số dạng toán thường gặp

Dạng 1: Tìm số phức thỏa mãn điều kiện có mô đun nhỏ nhất, lớn nhất

Phương pháp:

– Bước 1: Gọi số phức \(z = x + yi\left( {x,y \in R} \right)\).

– Bước 2: Thay \(z\) và biểu thức đã cho tìm mối quan hệ của \(x,y\).

– Bước 3: Đánh giá biểu thức có được để tìm max, min, từ đó suy ra \(x,y \Rightarrow z\).

Ví dụ: Cho \({z_1};{z_2}\) thỏa mãn \(\left| {{z_1} – {z_2}} \right| = 1;\left| {{z_1} + {z_2}} \right| = 3.\) Tính max\(T = \left| {{z_1}} \right| + \left| {{z_2}} \right|.\)

A. \(8\)

B. \(10\)

C. \(4\)

D. \(\sqrt {10} \)

Giải

Đặt \({z_1} = {x_1} + {y_1}i;{z_2} = {x_2} + {y_2}i.\) \(({x_1},{y_1},{x_2},{y_2} \in R)\). Điều kiện đã cho trở thành

+) \(\left| {{z_1} – {z_2}} \right| = 1\)\( \Rightarrow \left| {{x_1} + {y_1}i – {x_2} – {y_2}i} \right| = 1 \Leftrightarrow \sqrt {{{({x_1} – {x_2})}^2} + {{({y_1} – {y_2})}^2}} = 1\)

\( \Leftrightarrow {x_1}^2 + {x_2}^2 + {y_1}^2 + {y_2}^2 – 2{x_1}{x_2} – 2{y_1}{y_2} = 1\) (1)

+) \(\left| {{z_1} + {z_2}} \right| = 3 \Rightarrow \left| {{x_1} + {y_1}i + {x_2} + {y_2}i} \right| = 3\)

\( \Leftrightarrow {x_1}^2 + {x_2}^2 + {y_1}^2 + {y_2}^2 + 2{x_1}{x_2} + 2{y_1}{y_2} = 9\) (2)

Cộng vế với vế của (1) và (2) ta được \({x_1}^2 + {x_2}^2 + {y_1}^2 + {y_2}^2 = 5\)

+) \(T = \left| {{z_1}} \right| + \left| {{z_2}} \right| = \sqrt {{x_1}^2 + {y_1}^2} + \sqrt {{x_2}^2 + {y_2}^2} \)

Áp dụng bất đẳng thức Bunhiacopxki ta được

\(T = 1.\sqrt {{x_1}^2 + {y_1}^2} + 1.\sqrt {{x_2}^2 + {y_2}^2} \le \sqrt {\left( {1 + 1} \right).\left( {{x_1}^2 + {x_2}^2 + {y_1}^2 + {y_2}^2} \right)} \)

\( = \sqrt {2.5} = \sqrt {10} \Rightarrow \) \(\max T = \sqrt {10} .\)

Đáp án D.

Có thể sử dụng phương pháp hình học để giải các bài tập dạng này.

Phương pháp:

Bước 1: Tìm tập hợp điểm biểu diễn của số phức. Có 4 tập hợp điểm thường gặp

  • Đường thẳng
  • Đường tròn
  • Đường elip
  • Parabol

Bước 2: Vẽ tập hợp điểm biểu diễn của số phức. Từ đó tìm max, min của mô đun

Số phức \(z = x + yi(x,y \in R)\) có điểm biểu diễn là \(M(x,y)\). Mô đun của số phức \(z\) là độ dài đoạn thẳng \(OM\) với \(O\) là gốc tọa độ.

Ví dụ: Cho số phức \(z = x + yi\) thỏa mãn \(\left| {z – 2 – 4i} \right| = \left| {z – 2i} \right|\) đồng thời có mô đun nhỏ nhất. Tính \(N = {x^2} + {y^2}.\)

A. \(N = 8\)

B. \(N = 10\)

C. \(N = 16\)

D. \(N = 26\)

Giải

Gọi \(M(x,y)\) là điểm biểu diễn của số phức \(z = x + yi\)

+) \(\left| {z – 2 – 4i} \right| = \left| {z – 2i} \right|\)\( \Rightarrow {(x – 2)^2} + {(y – 4)^2} = {x^2} + {(y – 2)^2} \Leftrightarrow – 4x + 4 – 8y + 16 = – 4y + 4\)

\( \Leftrightarrow 4x + 4y = 16 \Leftrightarrow x + y – 4 = 0\)

Suy ra tập hợp điểm biểu diễn của \(z\) là một đường thẳng \(x + y – 4 = 0\)

+) \(N = {x^2} + {y^2} = {\left| z \right|^2}\)

\( \Rightarrow N\)min\( \Leftrightarrow \left| z \right|\)min\( \Leftrightarrow OM\)min \( \Rightarrow OM \bot d:x + y – 4 = 0\)

Phương pháp giải các bài toán tìm min, max liên quan đến số phức

\( \Rightarrow M(2,2)\) \( \Rightarrow N = {2^2} + {2^2} = 8\)

Đáp án A.

Dạng 2: Tìm GTLN, GTNN của mô đun số phức thỏa mãn điều kiện cho trước.

Phương pháp:

– Sử dụng các bất đẳng thức Cô si, Bunhiacopxki và bất đẳng thức tam giác.

Ví dụ: Cho \(z\) thỏa mãn \(\left| {z – 2 – 4i} \right| = \sqrt 5 .\) Tìm max\(\left| z \right|.\)

A. \(3\sqrt 5 \)

B. \(5\)

C. \(\sqrt 5 \)

D. \(\sqrt {13} \)

Giải

Dấu hiệu: Đề bài yêu cầu tính max của một mô đun ta sử dụng bất đẳng thức chứa dấu giá trị tuyệt đôi.

Ta có: \(\left| z \right| – \left| { – 2 – 4i} \right| \le \left| {z – 2 – 4i} \right| \Leftrightarrow \left| z \right| – \sqrt {20} \le \sqrt 5 \Leftrightarrow \left| z \right| \le \sqrt {20} + \sqrt 5 = 3\sqrt 5 \)

\( \Rightarrow \) max\(\left| z \right| = 3\sqrt 5 \)

Đáp án A.

Author: Cô Minh Anh